skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rebello, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We present uFS, a user-level filesystem semi-microkernel. uFS takes advantage of a high-performance storage development kit to realize a fully-functional, crash-consistent, highly-scalable filesystem,with relative developer ease. uFS delivers scalable high performance with a number of novel techniques: careful partitioning of in-memory and on-disk data structures to enable concurrent access without locking, inode migration for balancing load across filesystem threads, and a dynamic scaling algorithm for determining the number of filesystem threads to serve the current workload. Through measurements, we show that uFS has good base performance and excellent scalability; for example, uFS delivers nearly twice the throughput of ext4 for LevelDB on YCSB workloads. 
    more » « less
  2. We analyze how file systems and modern data-intensive applications react to fsync failures. First, we characterize how three Linux file systems (ext4, XFS, Btrfs) behave in the presence of failures. We find commonalities across file systems (pages are always marked clean, certain block writes always lead to unavailability), as well as differences (page content and failure reporting is varied). Next, we study how five widely used applications (PostgreSQL, LMDB, LevelDB, SQLite, Redis) handle fsync failures. Our findings show that although applications use many failure-handling strategies, none are sufficient: fsync failures can cause catastrophic outcomes such as data loss and corruption. Our findings have strong implications for the design of file systems and applications that intend to provide strong durability guarantees. 
    more » « less